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Synopsis 

Yamamoto’s integral constitutive equation in which the memory function is dependent on the 
second invariant of the rate of deformation tensor a t  past times has been found to be successful in 
predicting many of the nonlinear viscoelastic functions from the linear viscoelastic data for melts 
of linear polyethylenes, polypropylenes, and polystryene but not for those of branched polyethylenes 
with high level of long-chain branching. A specific functional form for the rate-dependent relaxation 
spectrum is used and is based on the physical meaning resulting from the molecular entanglement 
theory of Graessley on steady shearing flow. No arbitrary constant is involved in such an inter- 
conversion scheme. The data examined are dynamic storage modulus and loss modulus, steady 
flow viscosity, first normal stress difference, and parallel superimposed small oscillations on steady 
shear flow. The theory predicts that in such parallel superimposed experiments, storage modulus 
G’(o,+) divided by the square of frequency shows a maximum under finite shear and that C’(w,+) 
would itself become negative a t  a frequency whose value is about one third the superimposed rate 
of shear. The experiments are in line with such predictions. Possible reasons for the failure of the 
theory for branched polyethylenes are considered, and a possible approach is suggested so that the 
interconversion scheme may be successful for such resins. 

INTRODUCTION 

Nonlinear rheological behavior as exemplified in the steady flow viscosity, the 
first normal stress difference, the time-dependent stress growth and relaxation, 
and the small oscillations superimposed on steady shear flow has been explained, 
at- least semiquantitatively, through the use of various integral constitutive 
equations. These equations fall into two main categories. One is based on the 
rate of strain dependence such as in the models of Yamamoto,’ Bird and co- 
w o r k e r ~ , ~ , ~  C a r r e a ~ , ~  B ~ g u e , ~  and White.‘j The other category is based on the 
theories of strain dependence such as in the models of Bernstein, Kearsley, and 
Zapah7y8 White-Tokita? and Tanner.lo Neither category of theories with the 
accompanying approximations appears to be completely satisfactory in quan- 
titatively predicting all the above-mentioned nonlinear phenomena for all 
polymeric materials. The purpose of this article is neither to review the various 
theories nor to examine the reasons for their limited application. This has been 
accomplished in the recent articles of Kajura et a1.,l1 Yamamoto, Chen, and 
Bogue,12 and Takahashi et al.I3 Rather, we have used Yamamoto’s theory, in 
which the relaxation spectrum is dependent on the second invariant of the rate 
of deformation tensor, in the most general form and examined its applicability 
to the orthogonal superimposed data of Simmons14 on an 8.5% polyisobutylene 
solution in Cetane. This is the only polymeric solution considered here. 
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Thereafter, for reasons explained later, we introduce a specific functional form 
for the rate-dependent spectrum and examine its applicability to the dynamic 
moduli, the steady flow viscosity, and the first normal stress difference data on 
melts of linear and branched polyethylenes, polypropylenes, and polystyrene. 
The application of the theory to the parallel superimposed and transient shear 
stress data on linear polyethylene melts is considered only to a limited extent 
because of the experimental limitations discussed here. 

THEORY 

To explain the nonlinear viscoelastic fluid behavior, the following generalized 
relation represents a class of nonlinear constitutive equations1: 

IJ = J-1 p ( t  - t’, II(t’)) 1 + - (C-1 - 1) + - (C - 1) dt’ (1) “ 4) (i) I 
where C and C-’ are the Cauchy and the Finger deformation tensor and its in- 
verse, respectively; E is an empirical parameter; p is the governing memory 
function, which is taken to be dependent on the second invariant of the rate of 
deformation tensor a t  past times. The central problem is to determine the form 
of the memory functions p that can be used to model the fluids behavior over 
a reasonably general set of conditions. The determination of this function has 
given considerable difficulties. As discussed by Yamamoto,l this may be due 
in part, to the fact that specific forms for p have been assumed with parameters 
to be determined, rather than taking a completely general form. 

He proposed to determine the general form of p through the employment of 
an associated rate-dependent relaxation spectrum: 

Using eqs. (1) and (2), and the relations for the following experimental cases 
were derived. 
Stress growth or overshoot at  the start of steady shear flow: 

ny2 (t,?) = i /  J-: ~ ( 7 ) t  e--t/T + ~ ( 7 , j / )  (7 - ( t  + 7) e-t/T\d In 7 (3) 

x ( 2 ~ ~  - ( t 2  + 2t7 + 2 ~ ~ )  e- t /~)]d In 7 (4) 

where H ( 7 )  is the familiar relaxation spectrum in the linear viscoelastic theory, 
H ( 7 , j / )  is the rate-dependent relaxation spectrum, n12 is the shear stress, and 
nn = 011 - n22  is the first normal stress difference. In the limit o f t  - 03, the 
steady-state values of stress are given by the relations 

d?) = old?)/? = s-1 H(7,?)7 d In 7 (5) 

$I(?) = = J-: H ( 7 , i / b 2  d In 7 (6) 
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Stress relaxation following cessation of steady shear flow: 

on ( t  , j / )  = 2+2 j-1 72H(7,j/) etlrd In 7 

Small oscillations superimposed on steady shear flow: 

where 

Transverse of orthogonal superimposed oscillations: 

where 

EXPERIMENTAL 

Materials 

The polymers investigated are several samples of commercially available linear 
and branched polyethylenes of varying molecular weight (MW) and molecular 
weight distribution (MWD). The molecular parameters of these samples have 
appeared in previous articles.15J6 We also consider here commercial samples 
of polypropylenes of varying MW and a sample of polystyrene. 

Apparatus and Procedures 

Information on the MW, the MWD, and, where applicable, the level of long- 
chain branching (LCB) is obtained using the Waters Associates gel permeation 
chromatograph (GPC) operated at 135°C. The solvent used in it and for intrinsic 
viscosity determination to obtain the LCB level is 1,2,4-trichlorobenzene. The 
data on the steady shear viscosity ~ ( j / ) ,  the first normal stress difference on(+), 
the shear stress aY2 ( t , j / )  and al2(t,j/), the dynamic viscosity qL(o,j/), and storage 
modulus G’, (w, j / )  in parallel oscillations superimposed on steady shear flow are 
obtained in the low shear rate range using the Weissenberg Rheogoniometer 
(WRG) operated as a cone-and-plate instrument at 190OC. The shear rate range 
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is 0.001-1 sec-', but the exact range depends on the MW of the sample. Beyond 
1 sec-l, most samples exude out of gap. The oscillatory shear amplitude in 
parallel superimposed flow is 0.009 radian (0.5'). The dynamic viscosity f ( w )  
and storage modulus C ' ( w )  are obtained using WRG in the radian frequency 
range 0.33-60 sec-l. For some linear polyethylenes, independent check of q(+), 
~ ' ( w ) ,  G'(o), and a, data is obtained from measurements in Rheometrics Me- 
chanical Spectrometer (RMS). All sample plaques for use in WRG and RMS 
are stabilized with up to 0.6% Ionol (butylhydroxytoluene) to avoid chain ex- 
tension and scission. 

At high shear rates (+ > 3 sec-I), v(+)  data on 190°C are measured using a gas 
extrusion rheometer with two dies having LID = 0 (a sharp-edged orifice) and 
LID = 19.4, both having entrance angle of 90'. In this rheometer, volumetric 
flow rates are determined at  several pressures. When using the orifice, the low 
pressures are read on a 0-100 psi gauge with an accuracy of f 0.1 psi. Entrance 
and Rabniowitsch corrections are applied as usual. 

RESULTS AND DISCUSSION 

Determination of H(T,+) from Stress Growth 

The differentiation of eqs. (3) and (4) with respect to time shows' that both 
the shear stress and the normal stress exhibit overshoot since H ( T )  > H ( 7 , y )  and 
that the time of maximum of normal stress occurs after that of the shear stress. 
However, direct determination of H ( 7 , + )  requires either the time derivative of 
the difference between alz(t ,O) and alz(t,i.) or the difference a,(t,O) - a,(t,+). 
In addition, the knowledge of H ( 7 )  is required. Our own experience shows that 
reliable transient stress growth data are difficult to obtain because of the un- 
certainty in determining the onset of stress growth due to the finite response time 
of the instrument (-0.02-0.08 sec). The accuracy of determining the time de- 
rivative would thus be even more uncertain. Also, for many polymers studied, 
here, Newtonian behavior is not quite reached at  the lowest shear rate employed, 
and thus alz(t,O) and a,(t,O) cannot be accurately determined. 

Determination of H( T,?) from Stress Relaxation 

The time differentiation of eq. (7) gives 

Therefore, the conventional methods17 of determining H (  7) from relaxation 
modulus G ( t )  obtained in linear viscoelastic experiments can be applied in de- 
riving H(7 ,+)  from dalz(t,i/)ldt. However, as in stress growth experiments, 
limitations exist in determining accurately the time derivative of the stress re- 
laxation data. For example, at  long times, where the effect of shear rate is most 
noticeable, the stress relaxes to a fraction of the original value and sometimes 
does not go back to zero after waiting a long time because of a drift in electronics 
associated with our instrument. The time derivatives of such data would thus 
be even more uncertain. 
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Determination of H(T,+) from Superimposed Small Oscillations on 
Steady Shear Flow 

Parallel Oscillations 

Because of the appearance of H ’ ( T , ~ / )  term in eqs. (9) and (lo), it seems 
hopeless to try to determine H ( 7 , j / )  from these type of experiments. 

Orthogonal Oscillations 

To those familiar with the theory of linear’viscoelasticity, it is at once apparent 
from eqs. (12) and (13) that the conventional methods17 of obtaining H ( 7 )  from 
linear viscoelastic data, G’(w) and G”(w),  can be applied in the direct determi- 
nation of H ( 7 , j / )  from G’(w,j/) and G”(w,j/). To our knowledge, however, the 
only data reported in these type of experiments are those of Simmons14 on so- 
lutions of varying concentrations of polyisobutylene (PIB) in Cetane at 25°C. 
The typical data for 8.5% PIB in Cetane are shown in Figure 1. We selected 
G’(w,j/) data for determination of H ( 7 , j / )  using the computer program based on 
the following iterative method of Roesler and Twyman’? 

Insertion of the first approximation spectrum H1(7 , j / )  in eq. (12) gives G’~(w,j/) .  
The successive approximations are then expressed by the relation 

H k ( 7 , j / )  = H ~ - 1 ( 7 , j / )  + P[dG’(w,j/) /d In w - dG)k - l (~ , j / ) / d  In 
h 2 2 (17) 

Fig. 1. Storage modulus vs. frequency for 8.54% polyisobutylene in cetane a t  25°C. Typical data 
of Simmons in orthogonal small oscillations superimposed on steady shear flow a t  the shear rates 
indicated in the graph. 
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The validity of calculating the spectrum from G’(w)  is first illustrated by 
choosing G’(w) data in the w range 0.01-250 sec-’ for a linear polyethylene melt 
a t  190°C and using the relations 

From the H ( 7 )  derived from G’(w) using the principle of the above-mentioned 
iterative procedure, G”(w)  is back calculated from eq. (19) and compared with 
the experimental data. The agreement is good (Fig. 2), as expected, but in order 
to achieve a good agreement a t  high frequency, smooth but arbitrary extrapo- 
lation of G’(w) data by about one decade was necessary beyond w = 250 sec-l. 
The reason is that the data are fitted to the polynomial equation of order 3 or 
4 and the extrapolation avoids sudden termination of the data at the high fre- 
quency. Without such extrapolation, the calculated values of G‘ are underes- 
timated at  w > 40 while with extrapolation they are slightly overestimated. 

Having established the validity of obtaining the spectrum from the storage 
modulus, H ( 7 , j / )  is similarly determined from the nonlinear G’(w,j/) data for the 
PIB solution using eqs. (12), (16), and (17). From the H ( 7 , j / )  so determined, 
one can test the validity of a class of constitutive equations represented by eq. 
(1). However, such a test could not be carried out since q’(w,j /)  data back cal- 
culated from eqs. (13) and (14) do not agree with the experimental data (Fig. 3). 
In particular, the original data shows the effect of the steady shearing on q’ at 
high w is negligible whereas it is significant on G’ up to the maximum w used in 
the experiments. The calculations, on the other hand, show that the effect on 
dynamic viscosity should also be noticeable. We feel that this inability of in- 
terconverting q’(w,j /)  and G’(w, j / )  for the PIB solution is reported for the first 

1 
-I 0 I 2 3 

Fig. 2. Storage and loss modulus vs. frequency for a linear polyethylene melt at 190°C. Open 
circles are values of loss modulus calculated from relaxation spectrum derived from storage mod- 
ulus. 

L O G  w (d) 
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I I I 1 

L O G  w ti') 
Fig. 3. Dynamic viscosity vs. frequency for 8.54% polyisobutylene in Cetane at  25°C. Data (solid 

points) in orthogonal small oscillations superimposed on steady shear flow at  shear rate of 25.4 sec-'. 
Open circles are calculated values from the rate dependent relaxation spectrum derived from storage 
modulus in the same experiments. 

time and would provide yet another test for validity of a given class of constitutive 
equation. It is, of course, assumed that the data are reliable. 

Specific Form for the Rate-Dependent Spectrum 

It is now apparent that testing the validity of eq. (1) requires the orthogonal 
superimposed data to determine H ( 7 , + )  and then other linear and nonlinear 
viscoelastic data for comparison with the predicted values. Even here, the va- 
lidity test for the PIB solution was unsuccessful as shown above. Van Es and 
Christensen19 have provided yet another measure to test the validity of eq. (l), 
but the method requires transient normal stress data which depend on the in- 
strument stiffness and cone angle in the cone-plate geometry used for making 
these measurements and which data are generally considered not very reliable. 
However, it is especially for adding the molecular significance to the rate-de- 
pendent spectrum that we introduce a specific form for the rate dependent 
spectrum, viz. 

H ( 7 , q )  = H ( 7 )  h(%) g(%)3/2 % = +7/2 (20) 

Here, the functions h(%) andg(%) are the decreasing functions of % and were in- 
troduced by GraessleyZ0 to explain the non-Newtonian viscosity behavior. The 
function h (8) is the ratio of the rate of energy dissipation by a molecular chain 
divided by q2 to the same quantity in the limit of + = 0. The functiong(8) is the 
ratio of the total number of entanglements between the molecules a t  the shear 
rate i. to the same quantity in the limit of + = 0. The analytic expressions for 
h(8) and g ( % )  as given by Graessley are 

g(%) = - cot-1% + - % = + T I 2  
n- " [  1 + % 2  % I  
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As we see below, we can proceed to evaluate H'(7,T) and hence H ( 7 )  from steady 
shear viscosity and then make the appropriate interconversions between various 
viscoelastic functions. Such an approach has been summarized earlier15 for 
limited number of experiments on linear polyethylene melts, but H (  T,?) was 

LOG w (s - ' )  

Fig. 4. Dynamic viscosity and storage modulus vs. frequency for linear polyethylene melt a t  1 9 0 O C .  
The data, represented by solid lines to avoid crowding, are from parallel small oscillations super- 
imposed on steady shear a t  shear rates indicated in the graph. Open circles are calculated values 
from steady shear viscosity. 

Fig. 5. Dynamic storage modulus divided by square of frequency vs. frequency for a linear poly- 
ethylene melt a t  190°C. The theoretical prediction shows a maximum followed by a steep drop to 
negative values of the ordinate as frequency is lowered. 
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introduced semiempirically as a replacement for H ( T )  in the linear viscoelastic 
theory. 

We now consider the application of the specific form of the rate dependent 
spectrum to the data on melts of linear and branched polyethylenes, polypro- 
pylenes, and polystyrene. Parallel superimposed and stress growth data, how- 
ever, are available only for linear polyethylenes. 
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Linear Polyethylene Melts 

Use of eq. (20) in conjunction with eq. (5) allows one to determine H ( T )  from 
T(+) using the following iterative procedure21: 

Hl(7) = (2/7d [+9(+)11/i”T (23) 

Substitution of H~(T)  in eq. (18) and then in eq. (5) gives TI(+). The successive 

(24) 

We have thus determined both H ( 7 )  and H(T,+), the validity of both of which 
is tested as follows. If they are accurate, then the calculated values of u72(t,i.) 
from eq. (3), *I(?) from eq. (6), ulz(t,i.) from eq. (71, G’,(w,+) from eq. (91, and 
G”,(w,.jl) or its equivalent wq’,(w,+) from eq. (lo), G’(w) fromeq. (18), and G”(w) 
from eq. (19) should agree well with the experimental data. We choose here a 
few examples from each experiment to illustrate the point. The agreement 
between the calculated and the experimental data is excellent in all cases except 
for branched polyethylene with high level of long-chain branching. 

Despite the complexity of eqs. (9) and (lo), it  is encouraging to note the good 
agreement between both the experimental and the calculated G’,(w,j.) and 
G”, (w,?) in parallel superimposed experiments (Fig. 4). Furthermore, calcu- 
lations show G’(o,j.) is found to be a sharply decreasing function of w as y in- 

approximations are expressed by the relation 

H k ( 7 )  = Hk-l(7) -k p’[j/q(q) - h k - l ( ? ) ] l / ? = ~  12 3 2 
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Fig. 7. Dynamic viscosity and storage modulus for two linear polyethylenes of varying molecular 
weight and distribution. Crosses and solid points are data, open circles are calculated values from 
steady shear viscosity. 

creases and even becomes negative when w < +/2.7. Also the calculations show 
a maximum a t  lower frequency in a plot of G’(w,+)/w2 vs. w (Fig. 5) with a max- 
imum shifting to higher w as i. increases. Experimentally, we have observed 

-2 -I  0 I 
LOG Y 6’) 

Fig. 8. Steady shear viscosity and first normal stress difference for two linear polyethylenes of 
varying moelcular weight and distribution. Solid points and triangles are data; open circles are 
calculated values from steady shear viscosity. 
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negative G' values at approximately the above specified w and i/ since the phase 
angle exceeded 90" by 2 O  or 3". Unfortunately, we could not measure the data 
a t  even lower frequency because of experimental noise at very small amplitude. 
Also, a t  i/ > 0.54 sec-1, many polymer melts exude out of the gap between the 
cone and the plate. The only indication of negative G'(w,i/) and maximum in 
G'/w2 has been noted in experiments of Booij22 on polymer solutions. In any 
case, it is encouraging that the theoretical prediction of negative G b  (w,y)  and 
maximum in G'(w,i,)/w2 from the model used here is experimentally confirmed 
and further that G',(w,j.) and G",(w,jl) in parallel superimposed flows have been 
quantitatively predicted from the theory. 

-I  0 I 2 

LOG w or y ( 6 ' )  

Fig. 9. Dynamic viscosity, storage modulus, steady shear viscosity, and first normal stress difference 
vs. frequency or shear rate for polypropylene of melt flow rate 0.8. Open circles are calculated values 
from steady shear viscosity. Rest of the symbols represent data a t  190°C. 

LOG y 6') 

Fig. 10. Same as Fig. 9, except that  data are on polypropylene with melt flow rate of 4. 
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The shear stress growth and relaxation data need a brief discussion. In the 
case of stress growth data, we found that the instrument response time for purely 
viscous material of the same order of viscosity is 0.05-0.1 sec-l depending on the 
steady-state shear rate. Here, the instrument, response time is defined as the 
time required to reach 50% of the steady-state value. This experiment on purely 
viscous material is done using NBS Standard Oil 27 at  0°C at which temperature 

- I  0 I 2 3 

L O G  y (S') 

Fig. 11. Same as Fig. 9, except that  data are on polystyrene. 

E L U T I O N  COUNT 

(t--- lNCREASlNG M O L E C U L A R  WEIGHT) 

Fig. 12. Apparent molecular weight distribution for resin with high level of long-chain branching 
(LD 104) and with low level of LCB (LD 101). 
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LOG w or y (6'1 
Fig. 13. Dynamic storage and loss modulus and steady shear viscosity vs. frequency or shear rate 

for a branched polyethylene with low level of LCB. Solid lines represent data; open circles are cal- 
culated values from steady shear viscosity. 

the steady flow viscosity was 8500 poises. Accordingly, the instrument response 
time, defined as the midpoint of the stress growth curve obtained for this oil, was 
subtracted from the experimental time for the polymer melt. It is noted that 
this correction becomes crucial since we are plotting of2 vs. t on a log-log plot 
instead of log-linear plot, which is commonly reported in the literature. The 
finite instrument response time observed for the purely viscous fluid exists de- 
spite the presence of a magnetic clutch in WRG which allows the cone rotation 
to be rapidly started and stopped and it needs to be determined for the stress 
growth and the relaxation experiment in order to determine the accurate tran- 
sient data a t  short times. 

The calculated shear stress growth data are in reasonably good agreement (Fig. 
6) with the corrected experimental data. Similarly, good agreement with the 
stress relaxation data have been reported earlier.15 

Precisely quantitative agreement between the values of G'(w),  G" (w) ,  and 
a,(+) calculated from v(+) using the principles outlined here and those measured 
experimentally for four linear polyethylenes of varying MW and MWD has been 
demonstrated earlier.16 As an illustration, results are shown in Figures 7 and 
8 for two of the resins. 

Polypropylenes 

The relaxation spectrum H ( T )  is determined from the viscosity-shear rate data 
using eqs. (23) and (24). The dynamic modulus G'(w) and dynamic viscosity 
~ ' ( w )  are then calculated using eqs. (18) and (19). The normal stress data a,(+) 
are calculated using eqs. (20) and (6). For commercial polypropylenes of dif- 
fering molecular weights and melt flow rates (melt flow rate from 0.8 to 15), 
agreement between the measured data and calculated values is excellent for all 
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W s 
a 
d a 
Y 

- I  0 I 
LOG y (<') 

Fig. 14. First normal stress difference vs. shear rate for a branched polyethylene with low level 
of LCB. Open circles are calculated values from steady shear viscosity. Other symbols represent 
data. 

the samples. The results on two resins of MFR of 0.8 and 4 are shown in Figures 
9 and 10. 

Polystyrene 

The same procedure was applied to the data on a commercial sample of 
polystyrene, and here again the agreement between the calculated and the 
measured values is excellent (Fig. 11). 

Branched Polyethylenes 

Here we consider two polyethylenes-one of narrow MWD and low level of 
long-chain branching and another of broad MWD and high level of long-chain 
branching (Figure 12). In Figure 12, the raw GPC chromatograms are given. 
I t  means the high molecular weight is on the left side of the abscissa. From the 
GPC data and intrinsic viscosity of the whole polymer, the level of long-chain 
branching, as represented by n, and g,, is obtained using an approach outlined 
by Cote and Shida.23 Here, n, is the weight-average number of branch points 
per molecule, and g, is the ratio of intrinsic viscosity of the branched polymer 
t o  that of the linear polymer of same weight-average molecular weight. The 
calculation of G'(w) and G"(w) from q(+) shows good agreement for the nar- 
row-distribution sample (Fig. 13), but c,(+) data show that the calculated values 
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Fig. 15. Same as in Fig. 13, except that data are on a branched polyethylene with high level of 
LCB. 

are lower than the measured data, especially at higher + (Fig. 14). Such a trend 
is further amplified in highly branched broad MWD sample where neither of 
the calculated values of G’(w), G”(w) ,  and a,(+) is in precise agreement with the 
measured data (Figs. 15 and 16). 

It is noted that when we talk about lack of agreement between calculated and 
measured dynamic data, we are being precise. Many investigators may look at 

LOG 3 (i’) 

Fig. 16. Same as in Fig. 14, except that data are on a branched polyethylene with high level of 
LCB. 
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the same data in Figures 13-15 and call the agreement good. However, the 
discrepancy for the highly branched resin is significant (Fig. 16) when considering 
the normal stress data which are governed by longer relaxation times (higher 
molecular weight) than is the case for the dynamic data. 

In order to explain the failure of quantitative interrelation between various 
linear and nonlinear viscoelastic quantities for the branched polyethylenes, 
consider the fact that both the solution and melt viscosities of broad MWD 
commercial, branched polyethylenes are smaller than those for the linear poly- 
mers of comparable molecular weight. The decrease in melt viscosity for 
branched polymers may be ascribed to a reduction in chain entanglements or 
other interactions between the polymer molecules in the bulk plus that due to 
a reduction in relaxation times. Since the relaxation spectrum on branched 
polymers already reflects the reduction in relaxation times, it is possible that 
only the modification of h(0) g(0)1.5 term, eq. (20), which represents the reduction 
in chain entanglements, may be able to account for the observed discrepancy 
between the experimental and calculated values. Qualitatively speaking, a single 
arbitrary constant in eq. (20) which can be made to vary with the level of long- 
chain branching may resolve the discrepancy between the calculated and ex- 
perimental data. 

Conclusions 

Yamamoto’s integral constitutive equation in which the memory function is 
based on the rate-dependent relaxation spectrum has been successful in estab- 
lishing quantitative relations between various linear and nonlinear viscoelastic 
data. A specific functional form for the rate-dependent spectrum was used based 
on the physical meaning that the effect of shearing is to cut off the high-molec- 
ular-weight species from contributing to a given viscoelastic response, i.e., con- 
tribution of high-molecular-weight species to any nonlinear viscoelastic function 
decreases as shear rate increases. In other words, polymers under shear behave 
as if the molecular weight distribution became narrower and narrower as shear 
rates keep increasing. The interconversion is successful for melts of linear 
polyethylenes, polypropylenes, and polystyrene but not for melts of long-chain 
branched polyethylenes. The experimental data considered are dynamic moduli, 
steady flow viscosity, first normal stress difference, and parallel small oscillations 
superimposed on steady shear. It is not claimed that the theory used here is 
universally valid, or that it is uniquely applicable to polymer melts, but that it 
does quantitatively account for various linear and nonlinear viscoelastic data 
on melts of many commerically significant polymers. 
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